Impact of STARFM on Crop Yield Predictions: Fusing MODIS with Landsat 5, 7, and 8 NDVIs in Bavaria Germany

نویسندگان

چکیده

Rapid and accurate yield estimates at both field regional levels remain the goal of sustainable agriculture food security. Hereby, identification consistent reliable methodologies providing predictions is one hot topics in agricultural research. This study investigated relationship spatiotemporal fusion modelling using STRAFM on crop prediction for winter wheat (WW) oil-seed rape (OSR) a semi-empirical light use efficiency (LUE) model Free State Bavaria (70,550 km2), Germany, from 2001 to 2019. A synthetic normalised difference vegetation index (NDVI) time series was generated validated by fusing high spatial resolution (30 m, 16 days) Landsat 5 Thematic Mapper (TM) (2001 2012), 7 Enhanced Plus (ETM+) (2012), 8 Operational Land Imager (OLI) (2013 2019) with coarse MOD13Q1 (250 Except some temporal periods (i.e., 2001, 2002, obtained an R2 more than 0.65 RMSE less 0.11, which proves that OLI fused products are higher accuracy TM products. Moreover, accuracies NDVI data have been found correlate total number available scenes every year (N), correlation coefficient (R) +0.83 (between yearly NDVIs N) ?0.84 RMSEs N). For prediction, climate elements (such as minimum temperature, maximum relative humidity, evaporation, transpiration, solar radiation) inputted LUE model, resulting average 0.75 0.73 (OSR), 4.33 dt/ha 2.19 dt/ha. The results prove consistency stability estimation. Using were WW (R2 = 0.88) OSR 0.74). Lastly, observed positive R 0.81 0.77 between modelled OSR, respectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crop condition and yield simulations using Landsat and MODIS

Monitoring crop condition and yields at regional scales using imagery from operational satellites remains a challenge because of the problem in scaling local yield simulations to the regional scales. NOAA AVHRR satellite imagery has been traditionally used to monitor vegetation changes that are used indirectly to assess crop condition and yields. Additionally, the 1-km spatial resolution of NOA...

متن کامل

effect of seed priming and irrigation regimes on yield,yield components and quality of safflowers cultivars

این مطالعه در سال 1386-87 در آزمایشگاه و مزرعه پژوهشی دانشگاه صنعتی اصفهان به منظور تعیین مناسب ترین تیمار بذری و ارزیابی اثر پرایمینگ بر روی سه رقم گلرنگ تحت سه رژیم آبیاری انجام گرفت. برخی از مطالعات اثرات سودمند پرایمینگ بذر را بر روی گیاهان مختلف بررسی کرده اند اما در حال حاضر اطلاعات کمی در مورد خصوصیات مربوط به جوانه زنی، مراحل نموی، عملکرد و خصوصیات کمی و کیفی بذور تیمار شده ژنوتیپ های م...

A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion

a r t i c l e i n f o The focus of the current study is to compare data fusion methods applied to sensors with medium-and high-spatial resolutions. Two documented methods are applied, the spatial and temporal adaptive reflectance fusion model (STARFM) and an unmixing-based method which proposes a Bayesian formulation to incorporate prior spectral information. Furthermore, the strengths of both ...

متن کامل

the impact of e-readiness on ec success in public sector in iran the impact of e-readiness on ec success in public sector in iran

acknowledge the importance of e-commerce to their countries and to survival of their businesses and in creating and encouraging an atmosphere for the wide adoption and success of e-commerce in the long term. the investment for implementing e-commerce in the public sector is one of the areas which is focused in government‘s action plan for cross-disciplinary it development and e-readiness in go...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2023

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs15061651